Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
نویسنده
چکیده
In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161–213; 55 (1999), 127–208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection.
منابع مشابه
On Bi-hamiltonian Flows and Their Realizations as Curves in Real Semisimple Homogenous Manifolds
In this paper we describe a reduction process that allows us to define Hamiltonian structures on the manifold of differential invariants of parametrized curves for any homogeneous manifold of the form G/H, with G semisimple. We also prove that equations that are Hamiltonian with respect to the first of these reduced brackets automatically have a geometric realization as an invariant flow of cur...
متن کاملCompletely Integrable Bi-hamiltonian Systems
We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...
متن کاملIntegrable Hamiltonian Systems Associated to Families of Curves and Their Bi-hamiltonian Structure
In this paper we show how there is associated an integrable Hamiltonian system to a certain set of algebraic-geometric data. Roughly speaking these data consist of a family of algebraic curves, parametrized by an aane algebraic variety B, a subalgebra C of O(B) and a polynomial '(x; y) in two variables. The phase space is constructed geometrically from the family of curves and has a natural pro...
متن کاملIntegrable Systems Associated to Curves in Flat Galilean and Lorentzian Manifolds
This article examines the relationship between geometric Poisson brackets and integrable systems in flat Galilean, and Lorentz manifolds. First, moving frames are used to calculate differential invariants of curves and to write invariant evolution equations. The moving frames are created to ensure that the Galilean moving frame is the limit of the Lorentz one as c → ∞. Then, associated integrab...
متن کاملCompatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type
1 (Dubrovin–Novikov Hamiltonian operator [1]) is compatible with a nondegenerate local Hamiltonian operator of hydrodynamic type K 2 if and only if the operator K 1 is locally the Lie derivative of the operator K 2 along a vector field in the corresponding domain of local coordinates. This result gives, first of all, a convenient general invariant criterion of the compatibility for the Dubrovin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007